Regularized Orthogonal Tensor Decompositions for Multi-Relational Learning
نویسندگان
چکیده
Multi-relational learning has received lots of attention from researchers in various research communities. Most existing methods either suffer from superlinear per-iteration cost, or are sensitive to the given ranks. To address both issues, we propose a scalable core tensor trace norm Regularized Orthogonal Iteration Decomposition (ROID) method for full or incomplete tensor analytics, which can be generalized as a graph Laplacian regularized version by using auxiliary information or a sparse higher-order orthogonal iteration (SHOOI) version. We first induce the equivalence relation of the Schatten p-norm (0<p<∞) of a low multi-linear rank tensor and its core tensor. Then we achieve a much smaller matrix trace norm minimization problem. Finally, we develop two efficient augmented Lagrange multiplier algorithms to solve our problems with convergence guarantees. Extensive experiments using both real and synthetic datasets, even though with only a few observations, verified both the efficiency and effectiveness of our methods.
منابع مشابه
Introduction to Tensor Decompositions and their Applications in Machine Learning
Tensors are multidimensional arrays of numerical values and therefore generalize matrices to multiple dimensions. While tensors rst emerged in the psychometrics community in the 20th century, they have since then spread to numerous other disciplines, including machine learning. Tensors and their decompositions are especially bene cial in unsupervised learning settings, but are gaining popularit...
متن کاملRegularized Tensor Factorizations and Higher-Order Principal Components Analysis
High-dimensional tensors or multi-way data are becoming prevalent in areas such as biomedical imaging, chemometrics, networking and bibliometrics. Traditional approaches to finding lower dimensional representations of tensor data include flattening the data and applying matrix factorizations such as principal components analysis (PCA) or employing tensor decompositions such as the CANDECOMP / P...
متن کاملEfficient Orthogonal Tensor Decomposition, with an Application to Latent Variable Model Learning
Decomposing tensors into orthogonal factors is a well-known task in statistics, machine learning, and signal processing. We study orthogonal outer product decompositions where the factors in the summands in the decomposition are required to be orthogonal across summands, by relating this orthogonal decomposition to the singular value decompositions of the flattenings. We show that it is a non-t...
متن کاملCoordinate-descent for learning orthogonal matrices through Givens rotations
Optimizing over the set of orthogonal matrices is a central component in problems like sparsePCA or tensor decomposition. Unfortunately, such optimization is hard since simple operations on orthogonal matrices easily break orthogonality, and correcting orthogonality usually costs a large amount of computation. Here we propose a framework for optimizing orthogonal matrices, that is the parallel ...
متن کاملTensor Decompositions for Learning Latent Variable Models Report Title
This work considers a computationally and statistically e?cient parameter estimation method for a wide class of latent variable models—including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor structure in their loworder observable moments (typically, of secondand third-order). Speci?cally, parameter estimation is reduced to the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.08120 شماره
صفحات -
تاریخ انتشار 2015